TRANSISTOR C 6090
Abstract: TRANSISTOR C 6090 EQUIVALENT k 4110 C 6090 M 2 N 50 60 fft algorithm 1024-Point block diagram OF pentium 2 me 6100 butterfly "bit reverse"
Text: CHAPTER 12 The Fast Fourier Transform There are several ways to calculate the Discrete Fourier Transform DFT , such as solving simultaneous linear equations or the correlation method described in Chapter 8. The Fast Fourier Transform (FFT) is another method for calculating the DFT. While it produces the same
|
Original
|
|
PDF
|
W814
Abstract: W820 W830 adsp 21xx fft calculation w849 w842 16 point DIF FFT using radix 4 fft W808 32 point fast Fourier transform using floating point DFT radix
Text: FAST FOURIER TRANSFORMS SECTION 5 FAST FOURIER TRANSFORMS • The Discrete Fourier Transform ■ The Fast Fourier Transform ■ FFT Hardware Implementation and Benchmarks ■ DSP Requirements for Real Time FFT Applications ■ Spectral Leakage and Windowing
|
Original
|
ADSP-2100
ADSP-21000
W814
W820
W830
adsp 21xx fft calculation
w849
w842
16 point DIF FFT using radix 4 fft
W808
32 point fast Fourier transform using floating point
DFT radix
|
PDF
|
variable length fft processor
Abstract: 1Kx32
Text: AB35 AB35 Implementing Large and Non-Standard Transforms Application Brief AB35 - 1.0 February 1994 BACKGROUND The PDSP16510 is a stand-alone FFT Processor which performs 16, 64, 256, or 1024 point FFT's with input sampling rates of up to 40MHz - typically an order of magnitude faster than programmable DSP parts. A single device can window and transform
|
Original
|
PDSP16510
40MHz
variable length fft processor
1Kx32
|
PDF
|
AN47
Abstract: PDSP1601A PDSP16112 PDSP16112A PDSP16318A PDSP16510 PDSP16540
Text: AB35 AB35 Implementing Large and Non-Standard Transforms Application Brief AB35 - 1.0 February 1994 BACKGROUND The PDSP16510 is a stand-alone FFT Processor which performs 16, 64, 256, or 1024 point FFT's with input sampling rates of up to 40MHz - typically an order of magnitude faster than programmable DSP parts. A single device can window and transform
|
Original
|
PDSP16510
40MHz
AN47
PDSP1601A
PDSP16112
PDSP16112A
PDSP16318A
PDSP16540
|
PDF
|
AN47
Abstract: PDSP1601A PDSP16112 PDSP16112A PDSP16318A PDSP16510 PDSP16540
Text: AB35 AB35 Implementing Large and Non-Standard Transforms Application Brief AB35 ISSUE 1.0 February 1994 BACKGROUND The PDSP16510 is a stand-alone FFT Processor which performs 16, 64, 256, or 1024 point FFT's with input sampling rates of up to 40MHz - typically an order of magnitude faster than programmable DSP parts. A single device can window and transform
|
Original
|
PDSP16510
40MHz
AN47
PDSP1601A
PDSP16112
PDSP16112A
PDSP16318A
PDSP16540
|
PDF
|
AN47
Abstract: PDSP1601A PDSP16112 PDSP16112A PDSP16318A PDSP16510 PDSP16540
Text: AB35 AB35 Implementing Large and Non-Standard Transforms Application Brief AB35 - 1.0 February 1994 BACKGROUND The PDSP16510 is a stand-alone FFT Processor which performs 16, 64, 256, or 1024 point FFT's with input sampling rates of up to 40MHz - typically an order of magnitude faster than programmable DSP parts. A single device can window and transform
|
Original
|
PDSP16510
40MHz
AN47
PDSP1601A
PDSP16112
PDSP16112A
PDSP16318A
PDSP16540
|
PDF
|
16 point DFT butterfly graph
Abstract: AN4255 128-point radix-2 fft FFT Application note freescale w84k Rev04 MK30X256 DRM121 16 point Fast Fourier Transform radix-2 disadvantages of the energy meter
Text: Freescale Semiconductor Application Note Document Number: AN4255 Rev. 0, 11/2011 FFT-Based Algorithm for Metering Applications by: Luděk Šlosarčík Rožnov Czech System Center Czech Republic The Fast Fourier Transform FFT is a mathematical technique for transforming a time-domain digital signal
|
Original
|
AN4255
16 point DFT butterfly graph
128-point radix-2 fft
FFT Application note freescale
w84k
Rev04
MK30X256
DRM121
16 point Fast Fourier Transform radix-2
disadvantages of the energy meter
|
PDF
|
radix-4 asm chart
Abstract: assembly language programs for fft algorithm TMS320 Family theory DFT radix Real Time Clock LANGUAGE C C6000 C6201 TMS320 TMS320C6000 TMS320C6201
Text: Application Report SPRA291 - August 2001 Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform Robert Matusiak Digital Signal Processing Solutions ABSTRACT The Fast Fourier Transform FFT is an efficient computation of the Discrete Fourier
|
Original
|
SPRA291
TMS320
radix-4 asm chart
assembly language programs for fft algorithm
TMS320 Family theory
DFT radix
Real Time Clock LANGUAGE C
C6000
C6201
TMS320C6000
TMS320C6201
|
PDF
|
EEG Project with circuit diagram
Abstract: abstract for robotics project AN42877 EEG Block diagram fft algorithm ELECTRONIC NOTICE BOARD USING Real Time Clock Sigma-11 AN4287 Uart project rs232 protocol
Text: Implementing FFT Algorithms on PSoC System AN42877 Authors: Nicola Sgambelluri, Gaetano Valenza Associated Project: No Associated Part Family: CY8C29x66 Software Version: PSoC Designer 4.2+SP3 Associated Application Notes: None Application Note Abstract
|
Original
|
AN42877
CY8C29x66
64-point
EEG Project with circuit diagram
abstract for robotics project
AN42877
EEG Block diagram
fft algorithm
ELECTRONIC NOTICE BOARD USING Real Time Clock
Sigma-11
AN4287
Uart project
rs232 protocol
|
PDF
|
Radix-3 FFT
Abstract: lte reference design pipeline fft how to test fft megacore
Text: 24K FFT for 3GPP LTE RACH Detection Application Note 515 November 2008, version 1.0 Introduction In 3GPP Long Term Evolution LTE , the user equipment (UE) transmits a random access channel (RACH) on the uplink to gain access to the network. One method to extract this UE RACH signal at the basestation
|
Original
|
|
PDF
|
16 point DFT butterfly graph
Abstract: MPC7400 radix-4 DIT FFT C code
Text: Application Note AN2115/D Rev. 2, 1/2002 Complex Floating Point Fast Fourier Transform Optimization for AltiVec This document compares the performance of fast Fourier transform FFT with and without AltiVec™ technology to demonstrate how mathematically-intensive code can be adapted for
|
Original
|
AN2115/D
16 point DFT butterfly graph
MPC7400
radix-4 DIT FFT C code
|
PDF
|
Untitled
Abstract: No abstract text available
Text: Freescale Semiconductor Application Note Document Number: AN2115 Rev. 4, 04/2013 Complex Floating Point Fast Fourier Transform This document compares the performance of fast Fourier transform FFT with and without AltiVec technology to demonstrate how mathematically-intensive code can be
|
Original
|
AN2115
MPC74XX,
MC86XX,
|
PDF
|
analog cookbook
Abstract: No abstract text available
Text: CHAPTER 9 Applications of the DFT The Discrete Fourier Transform DFT is one of the most important tools in Digital Signal Processing. This chapter discusses three common ways it is used. First, the DFT can calculate a signal's frequency spectrum. This is a direct examination of information encoded in the
|
Original
|
|
PDF
|
ic 3038
Abstract: radix-2 MPC7400 MPC7410 MPC7451 MPC7455 MPC7457 Fast Fourier T 0-8493-0270-b radix-4 DIT FFT C code
Text: Freescale Semiconductor, Inc. Application Note AN2115/D Rev. 2.1, 6/2003 Freescale Semiconductor, Inc. Complex Floating Point Fast Fourier Transform Optimization for AltiVec This document compares the performance of fast Fourier transform FFT with and without
|
Original
|
AN2115/D
MPC7410,
MPC7451,
MPC7455,
MPC7457.
ic 3038
radix-2
MPC7400
MPC7410
MPC7451
MPC7455
MPC7457
Fast Fourier T
0-8493-0270-b
radix-4 DIT FFT C code
|
PDF
|
|
Untitled
Abstract: No abstract text available
Text: Freescale Semiconductor Application Note Document Number: AN4315 Rev. 1, 02/2012 Using the Freescale MMA9550L for High Resolution Spectral Estimation of Vibration Data by: Mark Pedley 1 Introduction Contents 1 This technical note examines the suitability of the
|
Original
|
AN4315
MMA9550L
MMA9550L
|
PDF
|
ADSP-2100
Abstract: ADSP-2100A 128-point radix-2 fft
Text: Two-Dimensional FFTs 7 7 7.1 TWO-DIMENSIONAL FFTS The two-dimensional discrete Fourier transform 2D DFT is the discretetime equivalent of the two-dimensional continuous-time Fourier transform. Operating on x(n1,n2), a sampled version of a continuous-time
|
Original
|
64-by64-point
ADSP-2100A)
ADSP-2100
ADSP-2100A
128-point radix-2 fft
|
PDF
|
MPC7400
Abstract: No abstract text available
Text: Application Note AN2114/D Rev. 2 1/2002 Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec This document compares the performance of fast Fourier transform FFT with and without AltiVec technology to demonstrate how mathematically-intensive code can be adapted for
|
Original
|
AN2114/D
MPC7400
|
PDF
|
23128 -1212
Abstract: 23128 radix-2 MPC7400 MPC7410 MPC7451 MPC7455 MPC7457 radix-4 DIT FFT C code
Text: Freescale Semiconductor, Inc. Application Note AN2114/D Rev. 2.1, 6/2003 Freescale Semiconductor, Inc. Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec This document compares the performance of fast Fourier transform FFT with and without
|
Original
|
AN2114/D
MPC7410,
MPC7451,
MPC7455,
MPC7457.
23128 -1212
23128
radix-2
MPC7400
MPC7410
MPC7451
MPC7455
MPC7457
radix-4 DIT FFT C code
|
PDF
|
Untitled
Abstract: No abstract text available
Text: Freescale Semiconductor Application Note Document Number: AN2114 Rev. 4, 04/2013 Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec This document compares the performance of fast Fourier transform FFT with and without AltiVec™ technology to
|
Original
|
AN2114
|
PDF
|
1q15
Abstract: radix-2 DIT FFT C code BUTTERFLY DSP xc2000 instruction set 16 point Fast Fourier Transform radix-2 16 point DIF FFT using radix 4 fft application of radix 2 inverse dif fft fft algorithm XE166 AP16119
Text: Application Note, V1.1, October 2007 AP16119 XC2000 & XE166 Families Fast Fourier Transform Based on XC2000 & XE166 Microcontroller Families Microcontrollers Edition 2007-10 Published by Infineon Technologies AG 81726 Munich, Germany 2007 Infineon Technologies AG
|
Original
|
AP16119
XC2000
XE166
DISCLAIC166Lib,
XC166
16-Bit
C166S
1q15
radix-2 DIT FFT C code
BUTTERFLY DSP
xc2000 instruction set
16 point Fast Fourier Transform radix-2
16 point DIF FFT using radix 4 fft
application of radix 2 inverse dif fft
fft algorithm
AP16119
|
PDF
|
16 point DIF FFT using radix 4 fft
Abstract: fft algorithm cosin 64 point FFT radix-4 BUTTERFLY DSP spra152 16 point DIF FFT using radix 2 fft TMS320C80 radix-4 ALU flow chart
Text: Implementing the Radix-4 Decimation in Frequency DIF Fast Fourier Transform (FFT) Algorithm Using a TMS320C80 DSP APPLICATION REPORT: SPRA152 Author: Charles Wu SC Sales & Marketing – TI Taiwan Digital Signal Processing Solutions January 1998 IMPORTANT NOTICE
|
Original
|
TMS320C80
SPRA152
16 point DIF FFT using radix 4 fft
fft algorithm
cosin
64 point FFT radix-4
BUTTERFLY DSP
spra152
16 point DIF FFT using radix 2 fft
radix-4
ALU flow chart
|
PDF
|
radix-2 dit fft flow chart
Abstract: 16 point DFT butterfly graph radix-2 radix-4 DIT FFT C code Butterfly Diode Y1 two butterflies Two Digit counter ADSP-2100
Text: 6 One-Dimensional FFTs 6.1 OVERVIEW In many applications, frequency analysis is necessary and desirable. Applications ranging from radar to spread-spectrum communications employ the Fourier transform for spectral analysis and frequency domain processing. The discrete Fourier transform DFT is the discrete-time equivalent of the
|
Original
|
|
PDF
|
radix-2 DIT FFT C code
Abstract: T0001 23128 AN2114 MPC7400 0-8493-0270-b radix-4 DIT FFT C code simple radix-2 DIT FFT C code
Text: Freescale Semiconductor Application Note Document Number: AN2114 Rev. 3, 10/2006 Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec by Freescale Semiconductor, Inc. Austin, TX This document compares the performance of a fast Fourier transform FFT with and without AltiVec™ technology to
|
Original
|
AN2114
radix-2 DIT FFT C code
T0001
23128
AN2114
MPC7400
0-8493-0270-b
radix-4 DIT FFT C code
simple radix-2 DIT FFT C code
|
PDF
|
radix-2 dit fft flow chart
Abstract: 16 point DIF FFT using radix 4 fft 16 point DIF FFT using radix 2 fft 8 point fft radix-2 DIT FFT C code radix-2 Butterfly two butterflies ADSP-2100
Text: 6 One-Dimensional FFTs 6.2.3 Radix-2 Decimation-In-Frequency FFT Algorithm In the DIT FFT, each decimation consists of two steps. First, a DFT equation is expressed as the sum of two DFTs, one of even samples and one of odd samples. This equation is then divided into two equations, one
|
Original
|
10-bit
radix-2 dit fft flow chart
16 point DIF FFT using radix 4 fft
16 point DIF FFT using radix 2 fft
8 point fft
radix-2 DIT FFT C code
radix-2
Butterfly
two butterflies
ADSP-2100
|
PDF
|